

Genomics Bioinformatics & Medicine

http://biochem158.stanford.edu/

Biochem 158/258, BMI 258 and HumBio 158G

Doug Brutlag **Professor Emeritus** Biochemistry and Medicine (by courtesy) brutlag@stanford.edu

Course Syllabus http://biochem158.stanford.edu/

	h .		
Date	Topic		
Jan 6	Introduction to Genomics and Medicine		
Jan 8	Diseases and Disease Databases		
Jan 13	Sequencing the Human Genome		
Jan 15	Finishing the Human Genome Sequence		
Jan 20	Next Generation Sequencing		
Jan 22	Genome Databases		
Jan 27	Bioinformatics and Functional Genomics I		
Jan 29	Bioinformatics and Functional Genomics II		
Feb 3	Sequence Variations in the Human Genome		
Feb 5	Structural Variations in the Human Genome		
Feb 10	Discovering Variations Associated with Disease		
Feb 12	Personal Genomics		
Feb 17	Clinical Genomics		
Feb 19	Stem Cells		
Feb 24	Stem Cell Therapies		
Feb 26	Gene Expression and Cancer Diagnostics		
Mar 3	MicroRNA Regulatory Networks		
Mar 5	Epigenetics		
Mar 10	Drug Discovery		
Mar 12	Pharmacogenomics		
Extra	Bibliographic Search		

Homework Research Projects http://biochem158.stanford.edu/

Topic	Date Due
<u>Letter of introduction (2 page max)</u>	Jan 15
Mendelian disease case presentation (4 page max)	Jan 22
Functional analysis of a human gene (4 page max)	Feb 5
Summary of a genome-wide association study (4 page max)	Feb 19
Describe genomic variations known to cause a specific inherited disease (4 page max)	Feb 26
Describe a disease that could be cured using stem cell therapy (4 page max)	Mar 5
Final project (10 page max)	Mar 15

Short Research Project Format

http://biochem158.stanford.edu/

- Title of Project and header (name, course, date)
- Introduction: why you are interested in the topic
- Methods: list of web databases for your topic including actual web pointers (URLs).
- Results as outlined in assignment
- Conclusions
- References including Web pointers (URLs) to Web sites and to literature papers

Gibson: A Primer of Human Genetics

A Primer of Human Genetics

Greg Gibson

Greg Gibson & Spencer V. Muse A Primer of Genome Science 3^{rd Edition}

http://ghr.nlm.nih.gov/handbook.pdf

Genetics Home Reference

Your Guide to Understanding Genetic Conditions

Handbook

Help Me Understand Genetics

Reprinted from Genetics Home Reference (http://ghr.nlm.nih.gov/)

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services

Published January 1, 2012

Free download

Genetics Home Reference Handbook

http://ghr.nlm.nih.gov/handbook.pdf

Table of Contents

Cells and DNA Cells, genes, and chromosomes	3
How Genes Work Proteins, cell growth, and cell division	16
Mutations and Health Gene mutations, chromosomal changes, and conditions that run in families	37
Inheriting Genetic Conditions Inheritance patterns and understanding risk	75
Genetic Consultation Finding and visiting a genetic counselor or other genetics professional	104
Genetic Testing Benefits, costs, risks, and limitations of genetic testing	115
Gene Therapy Experimental techniques, safety, ethics, and availability	139
The Human Genome Project Sequencing and understanding the human genome	147
Genomic Research Next steps in studying the human genome	153

The End of Illness David B. Agus

#1 NEW YORK TIMES BESTSELLER

THE END of ILLNESS

David B. Agus, MD

My Beautiful Genome by Lone Frank

The Language of Life: DNA and the Revol

Cognate Courses

Undergraduate Courses

- Bio 109A and 109B (aka HumBio158A and B) The Human Genome and Disease
- HumBio 157 The Biology of Stem Cells
- HumBio 159 Genes and Environment in Disease Causation

Graduate Level Courses

- Genetics 210 Genomics and Personalized Medicine
- Genetics 211 Genomics
- CS 262 Computational Genomics
- •CS 273A A Computational Tour of the Human Genome
- •BMI 214/CS 274 Representations and Algorithms for Computation

BioMedical Seminars

Biomedical Seminars Calendar

The Next 3 Weeks

Jan 06, 2015 (Tue) | 7:00 AM - 8:00 AM | Surgery

Surgery Grand Rounds: - Amanda Wheeler, MD - "The Evolution of Breast Surgery"

LKSC - LK130 : Stanford, CA

Details

Jan 06, 2015 (Tue) | 1:30 PM - 3:00 PM | Health Research & Policy - Epidemiology

Epidemiology Research Seminar: Curing the flaw of averages or ending an epidemic of erroneous models

CCSR 4205 : Stanford, CA

Details

Jan 07, 2015 (Wed) | 8:00 AM - 9:00 AM | Medicine

Medicine Grand Rounds - Mentorship in an academic medical enterprise

LKSC, Berg Hall, B&C Conf. Room : Stanford, CA

Details

Jan 07, 2015 (Wed) | 12:00 PM - 1:00 PM | Microbiology & Immunology

Attenuated hyperfusogenic mutants of varicella zoster virus modify the host transcriptional response to infection

Munzer Auditorium : Stanford, CA

Details

Jan 07, 2015 (Wed) | 1:00 PM - 5:30 PM | Institute for Immunity, Transplantation and Infection

Computational Approaches to Problems in Immunology and Infectious Diseases

ALWAY M106: Stanford, CA

Details

Medical Grand Rounds

http://lane.stanford.edu/biomed-resources/medgrandrounds.html

- Mike Snyder, Chairman of Genetics
 - Integrating Genomics into Medicine: Where we are and where we sh
- Atul Butte, Stanford Systems Medicine
 - Systems Medicine: Translating 300 billion points of data into Diagnos
- Muin Khoury, Director Office of Public Health CDC
 - Genomic Medicine in the 21st Century From Science to Action

http://hstalks.com/

- Cancer: apoptosis, epigenetics, monoclonal antibody therapy, evolution and medicine
- Diseases, Disorders and Treatments: Alzheimers, autoimmunity, autism and ASD, diabetes, cardiovascular disease, neurodegenerative diseases, obesity, prions, RNA interference, bioinformatics and genome analysis
- Drug Discovery: antivirals, biomarkers, cancer therapy, monoclonals, small molecules
- Genetics: Copy number variation, DNA methylation, epigenetics, eukaryotic gene regulation, human genetics, population genetics
- Name and Password

Impact of Genomics on Medicine I. Diagnostics

- Genomics: Identifying all known human protein coding genes
- Functional Genomics and Regulatory Genomics
 - In what tissues are they important?
 - When in development are the genes used?
 - How are they regulated normally?
- Novel diagnostics
 - Linking genes to diseases and to traits
 - Predisposition to diseases
 - Expression of genes and disease
- Personal Genomics
 - Understanding the link between genomics and environment
 - Increased vigilance and taking action to prevent disease
 - Improving health care

Impact of Genomics on Medicine II. Therapeutics

- Gene therapy
 - Replacing the gene rather than the gene product
- Stem cells therapies
 - Replacing the entire cell type or tissue to cure a disease
- Novel Drug Development
 - Identifying novel drug targets
 - Validating drug targets
 - Predicting toxicity and adverse reactions
 - Targeted gene therapies
- Pharmacogenomics
 - Personalized medicine
 - Adjusting drug, amounts and delivery to suit patients
 - Maximize efficacy and minimize side effects
 - Identify genetics of adverse reactions
 - Identify patients who respond optimally

Impact of Genomics on Medicine III. Strategic

- Genomics can discover disease associated genes
- Genomics can discover disease causing genes.
- Genomics provides understanding of disease
- Genomics and bioinformatics provides basis for novel drug development
- Genomics provides basis for novel genetic and stem cell therapies
- Genomics provides the basis for preventive medicine.

Leveraging Genomic Information

Novel Diagnostics

Microchips & Microarrays - DNA Gene Expression - RNA Proteomics - Protein

Novel Therapeutics

Drug Target Discovery Rational Drug Design Molecular Docking Gene Therapy Stem Cell Therapy

Understanding Metabolism

Understanding Disease
Inherited Diseases - OMIM
Infectious Diseases
Pathogenic Bacteria

Viruses

"Superior Doctors Prevent the Disease.

Mediocre Doctors Treat the Disease Before Evident.

Inferior Doctors Treat the Full Blown Disease."

-Huang Dee: Nai - Ching (2600 B.C. 1st Chinese Medical Text

Founder of Preventive Medicine: Louis Pasteur

When thinking about diseases, I never think about how to cure them, but instead I think about how to prevent them.

Immunization:

Preventive Medicine

- The goal is to prevent disease from occurring.
- First one must identify the cause of the disease.
- Treat the cause of the disease rather than the symptoms
 - Example 1: Peptic Ulcers
 - Example 2: Pyrogens
- Genomics identifies genetic causes of inherited disease.
- When Paul Wise (a Stanford pediatrician) heard that we may soon sequence every child's genome at birth, he stated:
 - "... all medicine may soon become pediatrics!"
- Overlooked accidents, infectious disease or acquired disease such as aging, cancer or auto immune disease
- Health care costs can be greatly reduced if
 - invests in preventive medicine
 - one targets the cause of disease rather than symptoms
 - controls environmental and behavioral effects

Health Care Policy

- Current health care treats disease rather than maintaining health (illness care?)
- Future health care will prevent disease
- Reduce need for expensive interventions
- Need policies that incentivize patients and doctors to prevent disease.
- Need social pressures to control behavior and increase vigilance.

Personalized Medicine

If it were not for the great variability among individuals, medicine might well be a science, not an art.

- Sir William Osler, Physician 1892
- Johns Hopkins School of Medicine
- Johns Hopkins Hospital
- Father of modern medicine

Personalized Medicine

Personalized Medicine

- Medicine is personal:
 - We are all different and respond to disease differently
 - Every cancer is different
 - Some of our genetic differences translate into how we react to drugs as individuals.
 - This is why personalized medicine is important
- Why does someone need twice the "standard" dose to be effective and others need less?
- Why does this drug work for you but not me?
- Why do I have side-effects and you don't?
- Why do some people get cancer and others don't?
- Why is anecdotal information irrelevant to your own health and treatment?

Huntington Disease

- Autosomal Dominant
 - On the tip of the short arm of chromosome 4
 - One bad gene causes disease (dominant)
 - Brain degeneration over 10-15 years until death
- Neurodegenerative disease
 - Loss of movement control
 - Loss of cognitive skills (dementia) and hallucinations
 - Depression, hostility, aggression and loss of inhibitions
- Dyskinesias Movement disorders
 - Chorea: uncontrollable tics and involuntary movements of extremities, hyperkinesias
 - Dystonia uncontrollable muscle contractions
 - Bradykinesia, slow uncertain movements
 - Dysphagia (difficulty in swallowing) and uncontrollable oral buccal dyskinesia

Senario 1: The Inheritance

- You are 20 years old.
- Your father abandoned you and your mother when you only 3 years old.
- Your father died this year and left you an inheritance.
- He died from an autosomal dominant disease known as Huntington's Chorea or Huntington's Disease.
- You have a 50% chance of inheriting this invariably fatal neurodegenerative disease.
- But there is a genetic test for this disease that can tell you not only if you have the disease, and if you do, when you will die from it.
- Would you take the genetic test or not?
- Why?

Diseases and Disease Databases

http://biochem158.stanford.edu/Diseases.html

- Lecture Materials
 - Diseases and Disease Databases Slide
 - Genomics and Mendelian Diseases
 - Huntington Disease
 - Cassandra's Connundrum
 - Nancy Wexler
 - Francis O. Walker Review of Huntington Disease
 - Molecular Mechanisms of Huntington Disease
 - Huntington Consortium Publication of Gen
 - Adverse Psychological Events one year after diagnosis
 - Adverse Psychological events five years after diagnosis
 - Facing Life with a Lethal Gene
 - Towards a Cure for Huntington Disease
 - Testing for Huntington Disease: Making An Informed Choice

